Evidential evolving Gustafson-Kessel algorithm for online data streams partitioning using belief function theory

نویسندگان

  • Lisa Serir
  • Emmanuel Ramasso
  • Noureddine Zerhouni
چکیده

A new online clustering method called E2GK (Evidential Evolving Gustafson-Kessel) is introduced. This partitional clustering algorithm is based on the concept of credal partition defined in the theoretical framework of belief functions. A credal partition is derived online by applying an algorithm resulting from the adaptation of the Evolving Gustafson-Kessel (EGK) algorithm. Online partitioning of data streams is then possible with a meaningful interpretation of the data structure. A comparative study with the original online procedure shows that E2GK outperforms EGK on different entry data sets. To show the performance of E2GK, several experiments have been conducted on synthetic data sets as well as on data collected from a real application problem. A study of parameters’ sensitivity is also carried out and solutions are proposed to limit complexity issues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E2GK: Evidential Evolving Gustafsson-Kessel Algorithm for Data Streams Partitioning Using Belief Functions

A new online clustering method, called E2GK (Evidential Evolving Gustafson-Kessel) is introduced in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial cMeans (ECM) and Evolving Gustafson-Kessel (EGK). E2GK uses the concept of credal partition of ECM and adapts EGK, offering a bett...

متن کامل

E2GK-pro: An Evidential Evolving Multimodeling Approach for Systems Behavior Prediction

Nonlinear dynamic systems identification and nonlinear dynamic behavior prediction are important tasks in several areas of industrial applications. Multiple works proposed multimodel-based approaches to model nonlinear systems. Multimodeling permits to blend different model types together to form hybrid models. It advocates the use of existing, well known model types within the same model struc...

متن کامل

Estimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm

Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical ...

متن کامل

E2GKpro: An evidential evolving multi-modeling approach for system behavior prediction with applications

Nonlinear dynamical systems identification and behavior prediction are difficult problems encountered in many areas of industrial applications such as fault diagnosis and prognosis. In practice, the analytical description of a nonlinear system directly from observed data is a very challenging task because of the the too large number of the related parameters to be estimated. As a solution, mult...

متن کامل

Recursive clustering based on a Gustafson-Kessel algorithm

In this paper an on-line fuzzy identification of Takagi Sugeno fuzzy model is presented. The presented method combines a recursive Gustafson–Kessel clustering algorithm and the fuzzy recursive least squares method. The on-line Gustafson–Kessel clustering method is derived. The recursive equations for fuzzy covariance matrix, its inverse and cluster centers are given. The use of the method is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2012